Quantification of Optical Clarity of Transparent Soil Using the Modulation Transfer Function
نویسندگان
چکیده
Transparent synthetic soils have been developed as a soil surrogate to enable internal visualization of geotechnical processes in physical models. Transparency of the soil dictates the overarching success of the technique; however, despite this fundamental requirement, no quantitative framework has yet been established to appraise the visual quality of transparent soil. Previous approaches to assess and optimize transparency quality included an eye chart assessment method, although this approach is highly subjective and operatordependent. In this paper, an independent method for quantitatively assessing the optical quality of transparent soil is proposed based on the optical calibration method, Modulation Transfer Function (MTF). The work explores this hypothesis and assesses the potential for MTF to quantify the optical quality of transparent soils for a number of aspects including (i) optimum oil blend ratio, (ii) depth of viewing plane, and (iii) temperature. The results confirmed that MTF offers a robust and reliable method to provide an independent quantitative measure of the optical quality of transparent soil. The impact of reduced soil transparency and the ability to track speckle patterns—thus accuracy and precision of displacement measurement—was correlated with MTF to evaluate the permissible viewing depth of transparent soil.
منابع مشابه
Investigation of the Spatial Resolution of MR-Based Polymer Gel Dosimetry versus Film Densitometry using Dose Modulation Transfer Function
Introduction: The conventional methods of dosimetry are not capable of dosimetry in such a small volume of less than one cubic millimeter. Although the polymer gel dosimetry method based on magnetic resonance imaging (MRI) could achieve three dimensional dosimetry with high resolution, a spatial resolution evaluation based on gel dose modulation transfer function has not been investigated yet. ...
متن کاملAnalytical Investigation of Frequency Behavior in Tunnel Injection Quantum Dot VCSEL
The frequency behavior of the tunnel injection quantum dot vertical cavitysurface emitting laser (TIQD-VCSEL) is investigated by using an analyticalnumericalmethod on the modulation transfer function. The function is based on therate equations and is decomposed into components related to different energy levelsinside the quantum dot and injection well. In this way, the effect of the tunnelingpr...
متن کاملEnhanced Modulation and Noise Characteristics in 1.55 µm QD Lasers using Additional Optical Pumping
The modulation response, relative intensity noise (RIN) and frequency noise (FN) characteristics of quantum dot (QD) lasers are investigated theoretically in the presence of an external optical beam. Using small signal analysis of the rate equations for carriers and photons, it is demonstrated that by injecting excess carriers into the QDs excited state through optical pumping, the modulation r...
متن کاملDesign and Fabrication Process of MTF Phantom CT Scan
Introduction: One of the main steps in the optimization process in diagnostic imaging is the quality control of radiology devices. The usual method of CT scan calibration is used of a phantom. The phantom created a certain weakening for the radiation through which it passes. One of the most suitable methods for quantitative analysis of the resolution and contrast in CT scan im...
متن کاملOptical ASK and FSK Modulation By Using Quantum Well Transistor Lasers
In this paper, transistor lasers (TLs) are used as an optical modulator for generation of ASK(Amplitude Shift Keying) and FSK (Frequency Shift Keying) optical signals. Our analysis is based on continuity equation, rate equations, and the theory of discontinuity of quasi-fermi level at the abrupt junction. Our simulation results indicate that, the specification of ASK and FSK optical signals, ar...
متن کامل